### **DIPARTIMENTO DI CHIMICA**

### CONSIGLIO NAZIONALE DELLE RICERCHE





UNIVERSITA' DEGLI STUDI DI FERRARA

#### ISTITUTO PER LA SINTESI ORGANICA E LA FOTOREATTIVITA'

Sezione di Ferrara

# RELAZIONE TECNICA SULL'ATTIVITA' FOTOCATALITICA DI MATERIALI VETROSI PRODOTTI DA SICIS - THE ART FACTORY S.r.l.

ABBATTIMENTO DI NO<sub>x</sub>

Ferrara, 19/04/11

#### Premessa:

Questa relazione contiene i risultati di una sperimentazione rivolta alla valutazione dell'efficienza fotocatalitica nell'abbattimento di  $NO_x$  di campioni di materiale vetroso in forma di mosaico prodotti da SICIS - The Art Factory S.r.l..

### **Introduzione**

E' noto che il Biossido di Titanio è un materiale semiconduttore che assorbe la radiazione elettromagnetica, in particolare la radiazione solare o quella emessa da una lampada luminosa a raggi ultravioletti (UV). In generale, quando l'energia è maggiore della differenza energetica tra la banda di valenza, a contenuto energetico inferiore, e la banda di conduzione, un elettrone viene promosso dalla banda di valenza alla banda di conduzione, generando un eccesso di carica elettronica (e¹) nella banda di conduzione ed una lacuna di elettroni (h¹) nella banda di valenza. Le lacune elettroniche possono reagire con una molecola di acqua generando un radicale ossidrile altamente reattivo, mentre gli elettroni hanno un potere riducente molto elevato e possono reagire con la molecola dell'ossigeno per formare l'anione superossido (O₂¹), come indicato nelle reazione sotto riportate

$$H_2O + h^+ \longrightarrow OH^{\bullet} + H^+$$
 $O_2 + e^- \longrightarrow O_2^{\bullet}$ 

Tali radicali concorrono all'efficace ossidazione e mineralizzazione di composti organici ad anidride carbonica e acqua, e sono in grado di trasformare gli ossidi di azoto in nitrati e gli ossidi di zolfo in solfati<sup>1-6</sup>. Materiali contenenti biossido di titanio dovrebbero quindi consentire la decomposizione di sostanze organiche inquinanti e maleodoranti, trasformando al contempo ossidi inorganici tossici, quali gli ossidi di azoto, in nitrati innocui e solubili in acqua. Un altro aspetto di interesse è legato all'azione antimicrobica, antibatterica e antimuffa, documentata in letteratura per film di Biossido di Titanio<sup>7,8</sup>.

#### Riferimenti Bibliografici

- 1) Ollis, D.; F. Pelizetti E; Serpone N. Environ Sci. Technol. 1991, 25, 1523.
- 2) Uccida, H.; Itoh, S.; Yoneyama, H. Chem. Lett. 1993, 1995.
- 3) Heller, A. Acc. Chem. Res. 1995, 28, 503.
- 4) Sitkiewitz, S.; Heller, A. New J. Chem 1996, 20 233.
- 5) Watanabe, T.; Kitamura, A.; Kojima, E.; Nakayama, C.; Hashimoto, K.; Fujishima, A.; In Photocatalytic Purification and Treatment of Water and Air; Ollis D. E., Al-Ekabi, H.; Eds; Elsevier: New York, 1993, 747.
- 6) Matsubara, H.; Takada, M.; Koyama, S.; Hashimoto, K.; Fujishima, A. Chem Lett. 1995, 767.
- 7) Negishi, N.; Iyoda, T.; Hashimoto, K.; Fujishima, A. Chem Lett. 1995, 841.
- 8) Sunada, K.; Kikuki, Y.; Hashimoto, K.; Fujishima, A. Environ Sci Technol, 1998, 32, 726.

#### **DESCRIZIONE CAMPIONI RICEVUTI**

| Campioni Esaminati | Aspetto                           |  |  |
|--------------------|-----------------------------------|--|--|
| 1                  | Vetro bianco                      |  |  |
| 3                  | Vetro bianco                      |  |  |
| 4                  | Vetro bianco                      |  |  |
| 5                  | Vetro bianco iridescente          |  |  |
| 7                  | Vetro bianco iridescente          |  |  |
| 8                  | Vetro bianco iridescente          |  |  |
| 9                  | Vetro bianco con posa             |  |  |
| 11                 | Vetro bianco con posa             |  |  |
| 12                 | Vetro bianco con posa             |  |  |
| 13                 | Vetro bianco iridescente con posa |  |  |
| 15                 | Vetro bianco iridescente con posa |  |  |
| 16                 | Vetro bianco iridescente con posa |  |  |
| 17                 | Vetro rosso con posa              |  |  |
| 18                 | Vetro rosso iridescente con posa  |  |  |
| 19                 | Vetro rosso                       |  |  |
| 20                 | Vetro rosso iridescente           |  |  |
| 21                 | Vetro rosso                       |  |  |
| 22                 | Vetro rosso iridescente           |  |  |

I campioni, si presentano in forma di mosaico con tasselli di dimensione approssimativa 1.3 cm x 1.3 cm (dal 1 al 16) e 2.2 cm x 2.2 cm (dal 17 al 22). In particolare, quelli con strato fotocatalitico sono caratterizzati da una iridescenza che li contraddistingue dai rispettivi riferimenti senza TiO<sub>2</sub>. Ove specificato i tasselli sono posati con dello stucco. Per i campioni dal 17 al 22 i tasselli sono alternativamente di vetro e di materiale ceramico.

In Figura 1 è riportata la foto dei campioni con strato fotocatalitico sottoposti all'analisi di abbattimento degli NO<sub>x</sub>. In Figura non sono mostrati i corrispondenti campioni di riferimento senza strato fotocatalitico.

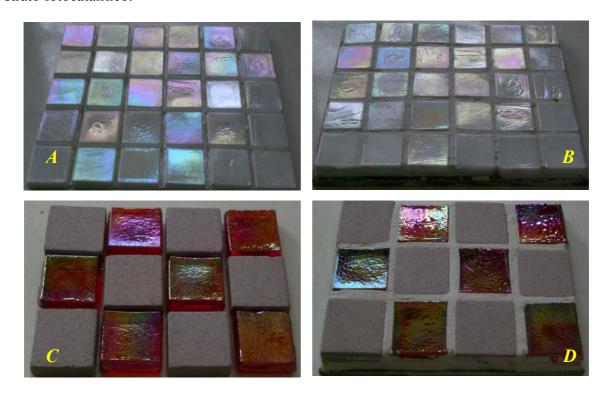



Figura 1 Foto rappresentativa dei campioni con strato fotocatalitico analizzati. (A) vetro bianco senza posa; (B) vetro bianco con posa; (C) vetro rosso senza posa; (D) vetro rosso con posa.

## RISULTATI SPERIMENTALI

## Metodologie sperimentali per la misura dell'abbattimento degli Ossidi di Azoto

Le misure di abbattimento degli  $NO_x$  sono state eseguite secondo la metodologia con flusso in continuo seguendo quanto riportato nella norma UNI-11247-2007.

In particolare, un flusso di 1 litro/min di aria contenente 0.55 ppm di  $NO_x$  (0.15 ppm  $NO_2 + 0.4$  ppm NO) con umidità nell'intervallo 45-60% viene fatto passare attraverso un reattore del volume di 3 litri dove è posizionato il campione con area geometrica di 64 cm<sup>2</sup>. La temperatura all'interno del reattore era mantenuta tra 26 e 27 °C.

Dopo aver atteso che la misura si stabilizzi (C<sub>B</sub>), il campione viene illuminato utilizzando come sorgente una lampada Vitalux della Osram con potenza di 300 W posizionata ad una distanza tale dal campione in modo che la densità di potenza radiante media della luce tra 300 e 400 nm

misurata con un radiometro Macam UV203 risulti pari a  $20~W/m^2$ . L'irradiazione prosegue fino al raggiungimento di un valore stabile ( $C_L$ ) di concentrazione di  $NO_x$ . Le misure di concentrazione degli ossidi di azoto sono state eseguite seguendo una metodologia analitica basata sulla chemiluminescenza, impiegando la seguente strumentazione: Nitrogen Oxides Analyzer, Model AC32M della Environnement S.A.. L'attività fotocatalitica ( $A_F$ ) espressa in m/h viene calcolata mediante la seguente formula:

$$A_F = \frac{C_B - C_L}{C_R} \times \frac{F}{S} \times I$$

dove

 $C_B$  e  $C_L$  sono le concentrazioni dopo aver raggiunto un valore stabile rispettivamente al buio e sotto illuminazione

S è l'area geometrica del campione in m<sup>2</sup>

F è il flusso del gas in  $m^3/h$ 

I è l'intensità adimensionale del flusso luminoso, ottenuto rapportando l'intensità misurata sperimentalmente I' (espressa in W/m<sup>2</sup>) a 1000 W/m<sup>2</sup>, corrispondenti a circa 100000 Lux, ovvero al valore medio che la luce solare raggiunge a mezzogiorno di una giornata di luglio (I = 1000/I').

# Attività fotocatalitica

In accordo con quanto più volte riportato nella letteratura scientifica, dei due ossidi che costituiscono gli NO<sub>x</sub>, cioè NO e NO<sub>2</sub>, il primo non dà adsorbimento apprezzabile su solido. Il secondo invece dà adsorbimento al buio e l'entità di questo adsorbimento dipende dalla natura acido-basica della superficie del solido e dall'umidità. Risulta pertanto che, per misure di attività fotocatalitica, NO è un probe molto più affidabile di NO<sub>2</sub> in quanto il suo abbattimento è essenzialmente dovuto all'effetto fotocatalitico.

In Tabella 1 sono riportati i risultati dell'attività fotocatalitica  $(A_F)$  dei campioni esaminati nei confronti della rimozione degli  $NO_x$   $(NO_2+NO)$ . Nella stessa tabella, sono anche riportati separatamente i valori di attività fotocatalitica nei confronti di  $NO_2$  ed NO.

Come riportato sopra NO è un indicatore migliore di NO<sub>2</sub> per stimare l'entità dell'effetto fotocatalitico in quanto il secondo scompare anche per adsorbimento al buio.

### Parametri sperimentali:

Volume reattore: 3 litri Flusso del gas: 0.06 m<sup>3</sup>/h

Area geometrica campione: 0.0064 m<sup>2</sup> Intensità flusso luminoso: 20 W/m<sup>2</sup>

Tabella 1 Attività fotocatalitica (A<sub>F</sub>) secondo norma UNI-11247

| A <sub>F</sub> (m/h) | NO <sub>x</sub> | NO <sub>2</sub> | NO   |
|----------------------|-----------------|-----------------|------|
| 1                    | 19.9            | -13.1           | 32.3 |
| 3                    | 17.4            | 0               | 23.9 |
| 4                    | 17.3            | 30.9            | 12.2 |
| 5                    | 49.8            | 0               | 68.4 |
| 7                    | 5.9             | -34.7           | 21.1 |
| 8                    | 12.1            | 18.3            | 9.8  |
| 9                    | 25.5            | 36.1            | 21.6 |
| 11                   | 19.7            | 32.3            | 14.9 |
| 12                   | 15.9            | 7.0             | 19.2 |
| 13                   | 29.3            | 48.7            | 22.0 |
| 15                   | 31.7            | 65.1            | 19.2 |
| 16                   | 17.2            | 20.6            | 15.9 |
| 17                   | 23.1            | 38.4            | 17.3 |
| 18                   | 20.4            | -14.9           | 33.7 |
| 19                   | 12.6            | -18.7           | 24.4 |
| 20                   | 12.9            | -53.9           | 38.0 |
| 21                   | 15.0            | -31.4           | 32.3 |
| 22                   | 14.1            | -38.4           | 33.7 |

I valori negativi relativi ad NO<sub>2</sub> indicano che si ha un accumulo della specie. Tale fenomeno, può essere spiegato ipotizzando che il campione ossidi NO ad NO<sub>2</sub> il quale viene poi rilasciato in fase gas prima di essere ulteriormente ossidato a nitrato.

Nella valutazione dei risultati ottenuti si tenga presente che, nelle condizioni sperimentali adottate, la rimozione completa di ciascuna specie corrisponde ad un valore di 468.7 m/h.

In Tabella 2 vengono riportati i risultati espressi come abbattimento percentuale degli NO<sub>x</sub>.

Tabella 2 Attività fotocatalitica espressa come abbattimento percentuale

| A <sub>F</sub> (%) | NO <sub>x</sub> | NO <sub>2</sub> | NO   |
|--------------------|-----------------|-----------------|------|
| 1                  | 4.2             | -2.8            | 6.9  |
| 3                  | 3.7             | 0               | 5.1  |
| 4                  | 3.7             | 6.6             | 2.6  |
| 5                  | 10.6            | 0               | 14.6 |
| 7                  | 1.2             | -7.4            | 4.5  |
| 8                  | 2.6             | 3.9             | 2.1  |
| 9                  | 5.4             | 7.7             | 4.6  |
| 11                 | 4.2             | 6.9             | 3.2  |
| 12                 | 3.4             | 1.5             | 4.1  |
| 13                 | 6.2             | 10.4            | 4.7  |
| 15                 | 6.8             | 13.9            | 4.1  |
| 16                 | 3.7             | 4.4             | 3.4  |
| 17                 | 4.9             | 8.2             | 3.7  |
| 18                 | 4.3             | -3.2            | 7.2  |
| 19                 | 2.7             | -4.0            | 5.2  |
| 20                 | 2.8             | -11.5           | 8.1  |
| 21                 | 3.2             | -6.7            | 6.9  |
| 22                 | 3.0             | -8.2            | 7.2  |

Attività fotocatalitica di materiali vetrosi e ceramici Committente: SICIS - The Art Factory S.r.l.

#### **Conclusioni:**

I risultati delle sperimentazioni eseguite secondo la metodologia con flusso d'aria in continuo seguendo quanto riportato nella norma UNI-11247-2007, evidenziano che mediamente i campioni con vetro rosso presentano una maggiore attività nella rimozione di NO. Tale valore è però poi compensato da un accumulo di  $NO_2$  in fase gas per cui complessivamente l'attività di abbattimento degli  $NO_x$  da parte di questi campioni risulta essere paragonabile o inferiore rispetto agli altri provini analizzati.

#### I Responsabili della Ricerca

Dr. Rossano Amadelli

Ronauo amadell'

Dr. Luca Samiolo

Unca powido

Ferrara, 19/04/11